Engineering Conferences International ECI Digital Archives

Biochar: Production, Characterization and Applications

Proceedings

8-20-2017

Can biochar link forest restoration with commercial agriculture?

David C. Smith Oregon State University, USA

Kristin Trippe USDA, USA

Follow this and additional works at: http://dc.engconfintl.org/biochar

Part of the Engineering Commons

Recommended Citation

David C. Smith and Kristin Trippe, "Can biochar link forest restoration with commercial agriculture?" in "Biochar: Production, Characterization and Applications", Franco Berruti, Western University, London, Ontario, Canada Raffaella Ocone, Heriot-Watt University, Edinburgh, UK Ondrej Masek, University of Edinburgh, Edinburgh, UK Eds, ECI Symposium Series, (2017). http://dc.engconfintl.org/biochar/26

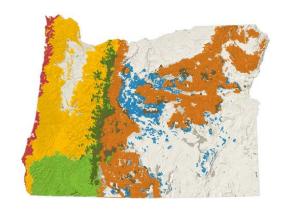
This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biochar: Production, Characterization and Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Can Biochar Link Forest Restoration with Commercial Agriculture?

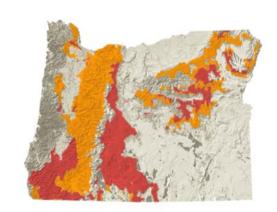
Economic Evaluation of a Forest-to-Farm Biochar Paradigm

David Smith

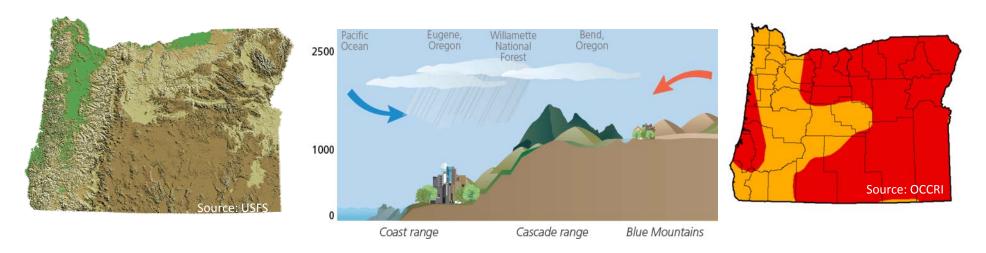
John Sessions
Kristin Trippe
Claire Phillips
John Campbell
John Bailey

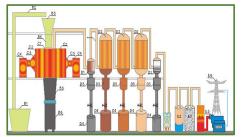

Will Holloman

Joshua Petitmermet Jeremy Fried Dan Leavell Viola Manning Stephanie Chiu

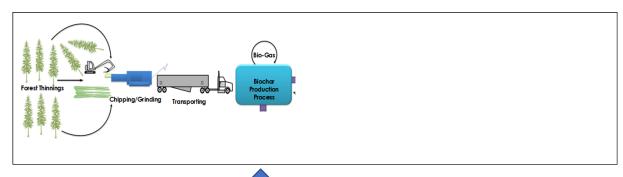


Catastrophic fire threatens Oregon's forests

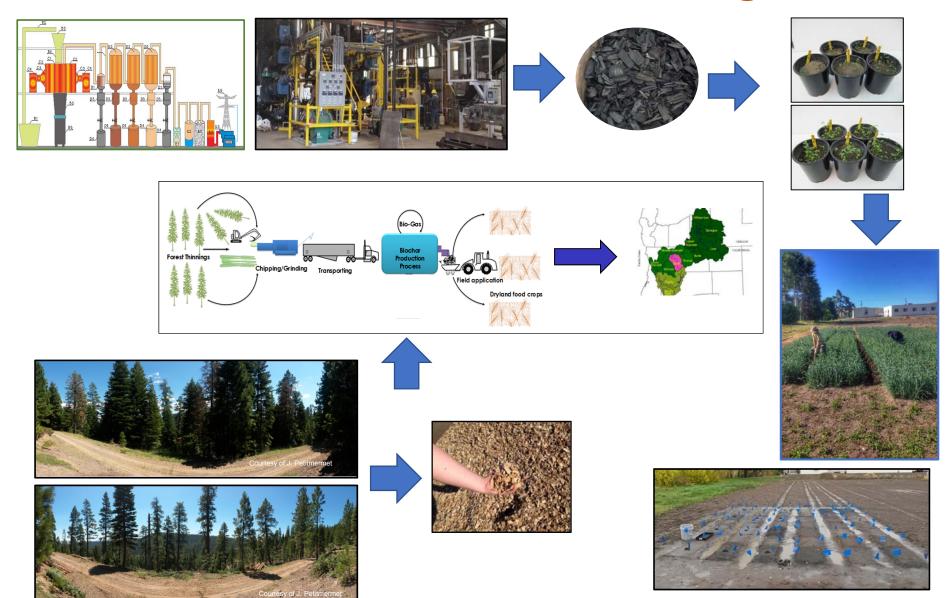



- 4 million ha. are at high risk of wildfire in Oregon
- Most of the risk is due to decades of fire suppression and a lack of funds to support fuel reduction treatments
- Limited demand for forest harvest residues restricts the ability of foresters to fund restoration projects.

Drought threatens Oregon's crops

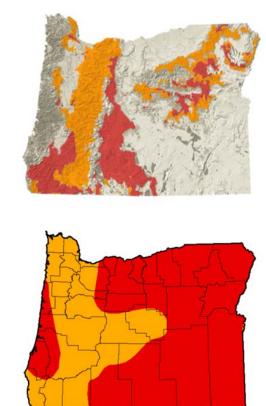

- In 2015 drought resulted in over >\$1.2 billion in crop losses
- Biochar has the potential to improve water availability in agricultural soils, but limited supplies means costs are high.
- Does a forest-origin biochar strategy pair these reciprocal needs of forest restoration and agricultural productivity?

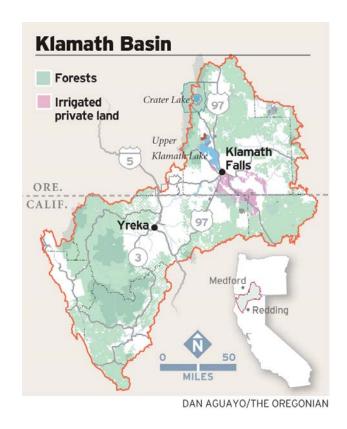
Does a forest-to-farm biochar paradigm pair the needs of forest restoration and agriculture?

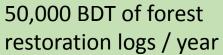

Char Properties

	Chemical Characteristics							
		CEC	Bulk					
	рН	cmol-C/kg	Density					
Microwave	8.23	7.34	0.25					
Thermal	9.34	6.05	0.27					

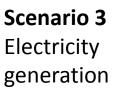
		Proximate		Ultimate					
	Volatile	Fixed C	Ash	С	н	N	0	S	
	%	%	%	%	%	%	%	%	
Microwave	13	82	5	88	2	0.5	5	0.089	
Thermal	14	73	12	83	2	0.5	5	< 0.005	

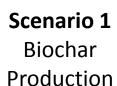

	VOCs							Semi-volatiles				
	Acetone	2-Butanone	Benzene	Toluene	Ethylbenzene	m,p-Xylenes	o-Xylene	4-Isopropyltoluene	Naphthalene	Naphthalene	2-Methylnapthalene	Phenanthrene
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Microwave	62	21	8.8	11	2	4.4	2.6	5.7	BMDL	2.6	BMDL	BMDL
Thermal	38	BMDL	2.6	1.8	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL


Does a forest-to-farm biochar paradigm pair the needs of forest restoration and agriculture?

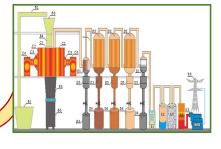

Klamath Basin of Oregon: where irrigated cropping systems, water scarcity, and high fire-hazard forests share the same landscape

BIOCHAR PRODUCTION PROCESS



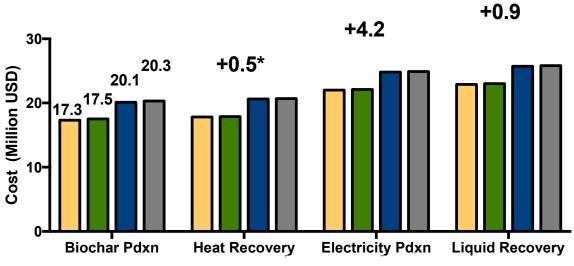


Scenario 4 Liquid Recovery

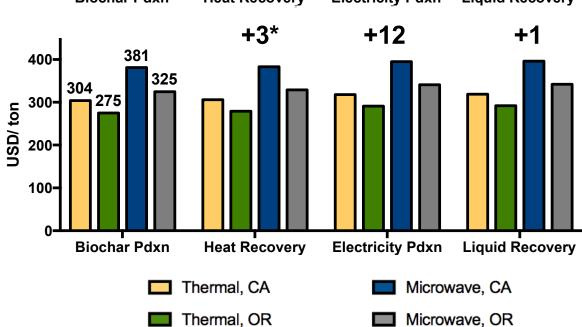

Scenario 2Heat Recovery

18,000 tons/year

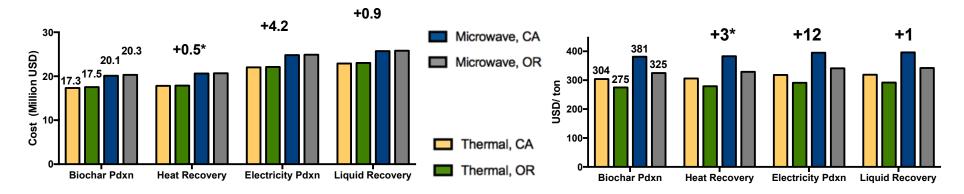
Microwave Pyrolysis



Thermal Pyrolysis



Preliminary Cost Estimates


Preliminary Capital Costs

Preliminary
Biochar
Production Cost

Critical Economic Factors

Plant location

Influences delivered log costs

Electricity rates

- Higher in California than Oregon
- Higher usage for microwave technology

Plant Complexity

Recovery of energy and condensable liquids adds capital and operating costs

Seasonality

- Influences raw material and finished product inventory
- Log deliveries limited to summer months
- Product sales limited to spring and fall months
- Plant operates year round to maximize asset utilization

Summary

- Biochar-based products utilize low-value biomass from forest restoration projects. Simultaneously, biochar can:
 - Prolong the storage of soil water
 - Sequester carbon in soils
 - Improve plant productivity
- Our economic analysis determined that:
 - Microwave pyrolysis is more costly than thermal pyrolysis
 - Electrical generation from this process adds a significant cost
- Further analyses will determine if these extra costs can be offset.

Acknowledgments

Economic Evaluation of a Forest-to-Farm Biochar Paradigm

Will Holloman
Joshua Petitmermet
Jeremy Fried
Dan Leavell
Viola Manning
Stephanie Chiu

Collaborators: Karr Group; BSEI Inc.; Green Diamond,
Miller Timber Services

- A shift level productivity study using steep slope harvesting technology was used to develop a model of tethered harvest.
- Used decision support models to optimize treatments and transport from forest to plant.
- The cost of tethered machines on tethered operations (TT) and untethered operations (TU), and the cost of untethered machines on untethered operations (UT) were estimated.

	No	Firewa	tch	With Firewatch			
Cost per	т	TU	UT	π	TU	TT	
green ton	\$26.84	\$23.63	\$21.38	\$27.04	\$23.80	\$21.55	

Courtesy of J. Sessions

Biochar Plant Design Assumptions

- Log supply:
 - 50,000 bdt/year
 - Low-grade logs from restoration treatments on National Forests
- Plant Location
 - Existing wood processing sites in Oregon and California
- Primary Technology
 - Thermal and Microwave pyrolysis reactors from commercial suppliers
- Other Technology
 - Size reduction and material handling systems from commercial suppliers